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have 

of a 

In the past decade the anthracyclinee adrlamycin (A), daunomycin (2) and carminomycia (2) 

come to be recognized as being among the mst effective drugs available for the treatment 

broad spectrum of human cancers. More recently, 4-demethoxydamomgcin (5) has been shown 
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to exhibit even greater activity than 1. 
2 

We now report a synthesis of this compouud.3 

As part of a program directed toward the development of effective routes to the anthra- 

cyclines, 
4 
we had occasion to examine the feasibility of an approach which embodied, as the key 

constructive step, the Die18 Alder reaction-between A and 2 (Kq. 1).6'7 Distressingly, thie 

fyJJ + 9 --J-;+ w (Eq. 1) 

OcH3 OCR3 

putative route to 1 faila utterly, due to the obtrusion of the alternative cycloaddition 

pathwaywhich affords the "internal" adduct g in ~80% isolated yield. Thie finding Initially 
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provided a less than welcome incentive to explore alternate approaches to the anthracyclines, 

but further investigation afforded a less drastic solution. In particular, the simple expe- 

dlent8 of replacing methoxydlene 5 with chlorodiene 2 overcomes the disastrous outcome of 

the original cycloaddition with 2 and gives the desired adduct J&! in 88% yield (J?.q. 2). 

&J$ + p 25°.8;$9) 

0 0 Cl 

Adduct g can be converted to 11 in four steps (40% overall yield from 2) using the 

sequence indicated in Equation 3; omission of the ketal hydrolysis step (aq. CF3COOH) gives 

12 in 51% overall yield from 1. 
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Multigram quantities of dienes & and 2 are available 

ester using the incompletely optimized sequences shown in 

n n 

Yn four steps 

Equation 4. 
10 

from acetoacetic 

0 

ref. 9 
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Consideration of the reagents employed in IQ. 3 might suggest that the development of 

the A-ring functionality proceeds via a 1,3-allylic sulfoxide transposition. - In fact, however, 

characterization of intermediates l6, G and 18 reveals the incursion of an entirely different - 

pathway (Scheme 1). 
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Scheme 1 
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and 12 in hand, conversion of thesecompounds to 4-demethoxydaunomycinone (19) - 
trivial. But innumerable attempts [CF3COOH, Hg(OCOCF3)2, HX, AcOH/hv, hydro- 

HOX, @eO2CR, etc., as well as the generalized approach suggested by 201 to - 
seemingly straightforward transformation so far have been completely unavail- 

cases A-ring aromatization is the principle mode of reaction observed). 

In view of these difficulties, confirmation of the structure of 11 was sought. This - 

was achieved by reduction (H2, Pd/C, EtOH, 1 atm) of 11 to (+)-21 - -* The (f)-21 so obtained 

(mpl93-959L1 is identical (except for chtiality-dependent properties) to an authentic sample 

of (S)-21 provided by Dr. F. Arcamone. 2,ll - The obtention of 21 thus affirms the structure - 
assigned to 11; it also constitutes a formal total synthesis of 4-demethoxydaunomycin 

(4). 
2,3b 12 

Efforts to achieve the 11/12 + 19 transformation continue. -- - 
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-- 
hp 800 (17 mo, Kugelrohr), 6 1.52 (3H, 8, CH3), 3.88 (4H, m, -0CH CH 0-), 5.15 (lR, 

Kr sI CdX+,-J&), 5,38 (Ui, d, J*ZHz, C=CRa-H&, 6.28, 6.51, 6.58, 6.8$ (SH, ARq, Cl+Cg-). 
2; mp 254-50 Cstarts to turn red at ~13Oo), 6 1.55 (3H, 8, CE3). 3.98 (4H, br 8, 
-OCH2CH20-), 4.94 (UL, br t, Js5H2, C-7 Ii), 6.10 (I& br d, JtiHz, C-8 H), 7.9 (4H, m, Ar-H). 
2: PIP 230-33O (insufficiently soluble for useful NMR spectrum). 12: mp 208-loo, 6 1.40 
(3H, s) CR3), 2.92, 3.22, 3.29, 3.59 (2H, ARq, C-10 H's). 4.07 (4H.a. -OCH2CH20-), 6.26, 
6.41, 7.07, 7.22 (2H, ABq, C-7, C-8 H's), 7.78 (2H m, Ar-H), 8.30 (W, m. ArH), 13.27 
(IK, 8) ArOE), 13.37 (lR, 8, ArOE). 14: bp 70-73& (16 mm) [lit.10 68-69.5 (11 =)I, 6 
1.40 C3H, 8, CK3), 2.67 (2H, d, J=3Ea, CHHCHO), 3.99 (48, 8, 
-*). 15: 

-OCH2CH20-), 9.75 (lH, t, J=3Hz, 
bp 930 (15 nrm), 6 1.57 (3H, 8, CR,), 3.91 (4H, m, -OCR2CH20-), 6.12 (lH, d, 
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J-lHa, C=CH@a), 6.51 (I.& d, J-l&, C-CHa-&,I, 9.65 (lH, s, -a-O). 16: mp 184-88°. 6 
1.60 OH, s, CH3), 3.97 (4H, m, -OCH2CH20-), 4.95 (1H. 1, C-7 H), 6.19 (lH, m, C-8 H), 
7.77 (2H, m, Ar-H), 8.58 (2H, m, Ar-H), 12.98 (lH, 8, ArOE), 13.67 (lH, 8, ArOE). 17: 
mp 218-200, 6 1.55 (3H, 8, CH3), 3.99 (4H, s, -OCH2CH2C-), 4.79 (lH, Qt, Js3Hz,C-7 Tii_, 
7.75 (2H, m, Ar-H), 8.45 (2H, m, Ar-Ii), 13.07 (lH, s, ArOE), 13.75 (la, 8, ArOE). 3: 
mp 225-80 (starts to turn red *1300), 6 (CF3COCHITMS) 2.44 (3H, s, CCCH3). 3.97 (%3H, 
m), 5.06 (lH, m, C-7 H), 7.96 (2H, m, Ar-H), 8.61 (2H, m, Ar-H). 
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